Structure, Bonding, and Stability of Small Boron-Lithium Clusters

Kiet A. Nguyen^{†,§} and Koop Lammertsma^{*,†,‡}

Department of Chemistry, University of Alabama at Birmingham, Chem205, UAB Station, Birmingham, Alabama 35294-1204, and Department of Chemistry, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands

Received: September 3, 1997; In Final Form: December 17, 1997

Structures and energies for BLi_{*n*} (n = 1-3) are investigated with various basis sets and with different levels of theory, including single reference- and multireference-based correlated methods up to QCISD(T)/6-311+G(3*df*)//MP2(full)/6-311+G(*d*), MCQDPT2/6-311+G(2*df*)// CASSCF/6-31G(*d*), G2, and G2(MP2) theory. BLi (³Π_g), BLi₂ (²B₂), and BLi₃ (C_{2v}) are global minima with respective atomization energies of ~26, 55, and 95 kcal/mol. Their structures are not strongly influenced by the size of the basis set nor by the method of electron correlation employed. Energetics for low-lying excited states of BLi and BLi₂ were determined. The dissociation energies obtained with B3LYP/6-31G(*d*) theory are in excellent agreement with those obtained with the highest levels of theory.

Introduction

Clusters are of considerable interest in research on materials ranging from ceramics to electronics and because of their impact on phenomena such as chemisorption, catalysis, and crystallization. Theory provides an important means to understand the electronic structures and energetics of clusters, and increasingly contributes toward the development of clusters for practical applications.¹⁻³ Our attention is focused on binary clusters composed of the elements boron and lithium. Lithium boride has been extensively studied as anode (bulk) material in lithium batteries,⁴ whereas its smaller clusters⁵⁻¹⁰ are of interest as highenergy additives to cryogenic hydrogen. An understanding of the bonding and energetics of these species is fundamental to the design of fuel additives. We are exploring the properties of the smaller clusters, analogous to the lithium clusters of carbon, oxygen, and sulfur.¹¹ To investigate such systems by theoretical methods, we found a need to investigate the basic systems because of an apparent lack of comprehensive data. In the present study we therefore report computations on BLi, BLi₂, and BLi3 at different levels of theory aimed at identifying suitable level(s) of theory for studying larger boron-lithium clusters.

Whereas diatomic lithium boride has already been studied extensively,^{4–6,10,12,13} few theoretical studies have addressed larger binary boron—lithium systems.^{4,9} We include the diatomic for calibration of BLi₂ and BLi₃. The computed stability of BLi was shown to be rather sensitive to the level of theory employed.^{12,13} The first ab initio SCF study by Kaufman and Sachs,⁵ and more recently by Meden et al.⁴ predicted its ¹Σ⁺ state to be unbound, whereas Cade and Huo,⁶ using a large Slater basis set, found it to be slightly more stable than the separated atoms. Boldyrev et al.¹³ studied BLi at the QCISD(T)/6-311+G(2df)//MP2/6-311+G(d) level and found the ground state to be ³Π_g with a binding energy D_e , of 27.2 kcal/mol. The energy differences of ³Π_g with the ¹Σ⁺ and ³Σ⁻ states were

estimated at 6.4 and 10.9 kcal/mol, respectively. Knowles and Murrell,⁸ using MRCI with a moderately large basis set (B: 10s7p2d/5s5p2d, Li: 10s4p2d/4s4p2d), obtained a similar binding energy of 25.5 kcal/mol for the ground state. Recently, potential energy curves, spectroscopic constants, and radiative lifetimes of several excited states of the singlet, triplet, and quintet spin states were calculated by Sheehy,¹⁰ using internally contracted MRCI with Dunning's quadruple- ζ basis set, and a D_e of 27.7 kcal/mol for the ground state of BLi was obtained.

The theoretical work on BLi₂ has been limited to UHF/ 6-31G(*d*) calculations by Meden et al.⁴ These authors also examined the electronic structure and stability of BLi₃ and larger BLi_n clusters at SCF/6-31G(*d*). The most stable BLi₂ structure was predicted to be bent with a B–Li distance of 2.369 Å and a Li–Li distance of 2.510 Å. They reported a planar D_{3h} structure for BLi₃, with a B–Li distance of 1.836 Å. Earlier, using CASSCF with a double- ζ basis set, Saxon⁹ showed that the D_{3h} and the T-shaped C_{2v} structures of BLi₃ are essentially isoenergetic. However, the planar D_{3h} form has two small degenerate frequencies at MP2, with imaginary normal modes leading to the C_{2v} isomer.

To shed more light on these small binary clusters and to assist in their gas-phase detection, we examine the structures, energies, and thermal stabilities of BLi_n (n = 1-3) using ab initio electronic structure theory. To explore their fragmentation, we consider all possible dissociation channels (reactions 1-8). Enthalpies of reaction for $BLi_n \rightarrow B + Li_n$ reflect the stabilization in the BLi_n clusters due to the boron atom, whereas the thermodynamics for Li and Li₂ elimination is estimated from the reactions $BLi_n \rightarrow BLi_{n-1} + Li$ and $BLi_n \rightarrow BLi_{n-2} +$ Li_2 , respectively. Other reactions determine atomization and bond dissociation energies (BDEs), which are useful in estimating the stability of clusters of different sizes.

 $BLi_2 \rightarrow B + 2Li$ (1)

 $BLi_2 \rightarrow BLi + Li$ (2)

 $BLi_2 \rightarrow B + Li_2$ (3)

$$BLi_3 \rightarrow B + 3Li$$
 (4)

^{*} Author to whom correspondence should be sent to in The Netherlands.

[†] Department of Chemistry, University of Alabama at Birmingham.

[‡] Department of Chemistry, Vrije Universiteit.

[§] Current address: Air Force Research Lab, AFAL/MLPJ, Wright Patterson AFB, OH 45433.

$$BLi_3 \rightarrow BLi_2 + Li$$
 (5)

$$BLi_3 \rightarrow BLi + Li_2 \tag{6}$$

$$BLi_3 \rightarrow B + Li_3 \tag{7}$$

$$BLi_3 \rightarrow B + Li + Li_2 \tag{8}$$

Our focus is on the ground-state molecules and their adiabatic dissociation channels, but low-lying excited states of BLi and BLi₂ are also considered. Because some of these boron–lithium systems possess unusual structures, the atoms in molecules (AIM) one-electron density analysis theory^{14–16} is used to address their bonding. The effects of basis set and levels of theory on the structures and energies of these small BLi_n clusters (n = 1-3) are evaluated. Because our interest extends to larger clusters, we tested the applicability of the more economical density functional theory (DFT) formulation of Kohn and Sham (KS).¹⁷

Computational Methods

The structures of all BLi_n isomers are optimized at the Hartree–Fock (HF) Self-Consistent Field (SCF) level,^{18,19} Møller–Plesset second-order perturbation theory (MP2),^{20,21} and KS theory¹⁷ using the 6-31G(d),²² 6-311G(d),²³ and 6-311+G-(d)²⁴ basis sets. Additional sets of d and f functions are used to study the basis set effect further. DFT calculations were carried out using the Becke's three-parameter hybrid functional,^{25–27} hereafter referred to as B3LYP. Because BLi_n may have significant configurational mixing and low-lying excited states, requiring a multiconfigurational description, geometries are also evaluated with the Complete Active Space SCF (CASSCF) wave functions.²⁸

All structures were verified to be either minima or transition states by evaluation of the force constant matrixes, obtained analytically or from finite differences of the analytically determined gradients. Enthalpies of formation for the single-configurational-based wave functions are reported at G2²⁹ and G2-(MP2).³⁰ These methods employ MP2/6-31G(d) optimized geometries. G2 energies are obtained from quadratic configuration interaction $(QCISD(T))^{31}$ using the 6-311G(*d*,*p*) basis set with various basis set additivity corrections (diffuse and polarization functions) at the frozen core full fourth order perturbation theory (MP4(SDTQ)) and at the MP2 level, an empirical correction, and a 0.8929 scaled SCF/6-31G(d) zeropoint vibrational energy (ZPE) correction. The empirical correction of $(-0.19n_{\alpha} - 4.81n_{\beta}) \times 10^{-3}$ au is denoted as E (HLC). The G2(MP2) energy expression is simpler. It uses the QCISD(T)/6-311G(d,p) energy with basis set additivity corrections at MP2 and the same empirical and ZPE corrections as for G2. Both expressions are shown later. The G2 and G2-(MP2) methods have been reported to give a mean absolute deviation from 125 experimental energies of 1.21 and 1.58 kcal/ mol, respectively^{29,30}:

E(G2) = E(QCISD(T)/6-311G(d,p)) + E(MP4/6-311+G(d,p)) - E(MP4/6-311G(d,p)) + E(MP4/6-311G(2df,p)) - E(MP4/6-311G(d,p)) + E(MP2/6-311G(3df,2p)) - E(MP2/6-311G(2df,p)) - E(MP2/6-311G(d,p)) + E(MP2/6-310G(d,p)) + E(MP2/6-300) + E(MP2/6-300) + E(MP2/6-300) + E(MP2/6-300) + E(MP2/6-300) + E(MP2/6-300) + E

$$E(G2(MP2)) = E(QCISD(T)/6-311G(d,p)) + E(MP2/6-311+G(3df,2p) - E(MP2/6-311G(d,p) + E(HLC) + E(ZPE) (10))$$

Energies for multiconfigurational-based wave functions were obtained by the second-order multiconfigurational quasidegenerate perturbation theory³² (MCQDPT2) using CASSCF/ 6-31G(d) structures. All electronic structure calculations were carried out using the GAUSSIAN 94³³ and GAMESS³⁴ programs.

Results and Discussion

We investigated the ${}^{3}\Pi_{g}$ and ${}^{1}\Sigma^{+}$ states of BLi, the ${}^{2}B_{2}$ and ${}^{2}B_{1}$ states of BLi₂ and the C_{2v} and D_{3h} symmetry forms of BLi₃. As part of this investigation, the ${}^{1}\Sigma_{g}$ state of Li₂ and the ${}^{2}B_{2}$ and ${}^{2}A_{1}$ states of Li₃ are included. Structural parameters, total energies, harmonic vibrational frequencies, and bond critical point data are tabulated for BLi, BLi₂, and BLi₃, and their fragments Li₂ and Li₃ (except for critical point data) in Tables 1–8; the total energies for the atomic boron and lithium are included for convenience (Tables 4 and 6). Computer-generated structures of BLi₃ and Li₃ are displayed in Figure 1. We discuss first the influence of the various theoretical methods on the optimized BLi_n clusters, then some bonding characteristics, and finally their energies.

A. Analysis of Theoretical Methods. The SCF, MP2, QCISD, and B3LYP structures were optimized first with the 6-31G(*d*) basis set and then with the valence triple- ζ series expanded with different types of polarization and diffuse functions to give the following basis sets: 6-311G(*d*), 6-311+G(*d*), and 6-311+G(2*df*). Analysis of the basis set effect on the QCISD and B3LYP geometries was limited to BLi and BLi₃ isomers. Only the smaller 6-31G(*d*) basis set was used for the CASSCF geometry optimizations.

Basis Set Effect. We start with some general observations. Within each selected theoretical method, using different basis sets, changes in geometrical parameters of all systems are < 0.05Å for bond lengths and $<1^{\circ}$ for bond angles. The exception is the ${}^{2}B_{2}$ state of Li₃ for which the largest difference in the Li-Li distance is found to be 0.08 Å at MP2 between the 6-31G-(d) and 6-311+G(d) basis sets; this Li-Li interaction is strongly coupled with a flat Li-Li'-Li bend potential. As we increase from the double to the triple- ζ split valence basis set, all systems show a shortening of bond distances, as expected. However, the effects of additional diffuse and polarization functions on the geometrical parameters are negligible and in some cases nonexistent. Because the basis set effect is small for both the SCF and (single-configurational based) correlated structures, the use of the more economical 6-31G(d) basis set seems adequate for geometry optimizations of larger BLi_n clusters. We note that the SCF-based correlated methods give reasonable geometries and energies (vide infra) for open shell systems even in cases with significant spin contamination.35

Electron Correlation. Next, we examine the effects of different electron correlation methods on the geometries. With each of the basis sets considered, the BLi bond lengths at MP2 and B3LYP are slightly shorter, whereas those at QCISD and particularly CASSCF are slightly longer than the SCF bond lengths. However, the various correlated methods give similar optimized structures when the same basis set is used. The most pronounced differences are found for BLi₃ (C_{2v}) with differences in BLi bond lengths of -0.04 Å between the SCF and B3LYP methods, of +0.07 Å between the SCF and CISD methods, and of +0.12 Å between the MP2 and QCISD methods (all with

TABLE 1: Structural Parameters and Total and RelativeEnergies for BLi Isomers^a

	BL	і (³ П _g)	i (¹Σ+)				
level	energy	B-Li	freq.	energy	B-Li	freq.	ΔE
B3LYP/A	32.19043	2.141	539	32.17774	2.416	425	8.0
B3LYP/B	32.19976	2.128	539	32.18573	2.399	431	8.8
B3LYP/C	32.20061	2.131	538	32.18702	2.398	432	8.5
B3LYP/D	32.20124	2.130	537	32.18742	2.397	430	8.7
(U)HF/A	31.97912	2.143	573	31.94303	2.426	450	22.6
(U)HF/B	31.98993	2.131	570	31.95314	2.403	458	23.1
(U)HF/C	31.99077	2.134	568	31.95496	2.401	459	22.5
MP2(full)/A	32.03079	2.138	564	32.01134	2.426	437	12.2
MP2(full)/B	32.07087	2.126	566	32.04997	2.406	443	13.1
MP2(full)/C	32.07222	2.130	562	32.05213	2.404	445	12.6
QCISD/A	32.04416	2.151	548	32.03603	2.459	392	5.1
QCISD/B	32.06064	2.137	549	32.04927	2.425	409	7.1
QCISD/C	32.06189	2.141	548	32.05089	2.420	414	6.9
CASSCF(4,8)/A	32.02309	2.172	533	32.02433	2.474	348	-0.8

^{*a*} Total energies in -au, relative energies (ΔE) for the two isomers in kcal/mol, bond lengths in Å, and frequencies in cm⁻¹. ^{*b*} A: 6-31G-(*d*), B: 6-311G(*d*), C: 6-311+G(*d*), and D: 6-311+G(2*df*).

the 6-31G(*d*) basis set). Notable differences are also found for Li₂ and Li₃; interestingly their CASSCF/6-31G(*d*) geometries are more compact than the SCF counterparts. For Li₃ (²A₁), the largest variation in the Li–Li distance of 0.02 Å between B3LYP/6-31G(*d*) and CASSCF(3,3)/6-31G(*d*) can be attributed to the flatness of the Li–Li'-Li bend potential. We note that B3LYP predicts a ²B₂ ground state for Li₃ and characterizes the ²A₁ structure as a saddle point. All other methods identify both structures as minima.

B. Structures and Bonding. The properties of the BLi_n (n = 1-3) global minima are discussed with emphasis on bonding, bond lengths, and vibrational frequencies. We use the 'atoms in molecules' topological one-electron density analysis to evaluate the bonding properties. Details of this method have been described elsewhere.^{16,18} We concentrate on the properties of critical points where the gradient of the charge density $\rho(\mathbf{r})$ vanishes. Bond critical points are characterized by a Hessian of $\rho(\mathbf{r})$ with one positive eigenvalue along the bond axis. The Laplacian of the electron density at a critical point $\nabla^2 \rho(\mathbf{r})$ determines the region in space wherein the electron charge is concentrated or depleted. The $\rho(\mathbf{r})$ and $\nabla^2 \rho(\mathbf{r})$ values are summarized in Table 8.

The BLi and BLi₂ Structures. The average bond lengths of BLi (${}^{3}\Pi_{g}$) using all theoretical levels in Table 1 (except that of the CASSCF structure) is 2.135 Å with a standard deviation (σ) of 0.007 Å. The corresponding average harmonic frequency of 554 cm⁻¹ (σ = 14) show BLi to be a well-defined minimum energy structure. The BLi bond critical point is located in close proximity of the Li-nucleus, which reflects the difference in electronegativity between the boron and lithium atoms.

The average bond length of BLi₂ (²B₂) of 2.324 Å ($\sigma = 0.014$, Table 2) is longer than that of BLi, and the smallest of its three frequencies of 291 cm⁻¹ ($\sigma = 11$) is correspondingly smaller. The difference in these BLi bond lengths (8%) is also reflected in the electron densities of their critical points (Table 8). For example, the MP2/6-31G(*d*) $\rho(\mathbf{r})$ value of 2.07 × 10⁻² au for BLi₂ is significantly smaller than the 2.90 × 10⁻² au for BLi. Still, the electron density at all BLi bond critical points is small. Their Laplacian values indicate that the electron density distribution around the bond critical points is rather flat, which suggests that BLi₂ is easily deformed from its ideal geometry.

The BLi₃ Structure. All levels of theory predict the C_{2v} structure of BLi₃ to be a minimum, whereas the D_{3h} isomer is also a minimum at the SCF and CASSCF levels (Table 3). Force

field calculations at the MP2, QCISD, and B3LYP correlated levels of theory reveal two small degenerate imaginary frequencies leading to the C_{2v} structure. These results are in agreement with the MP2 and CASSCF data reported earlier by Saxon.9 Our CASSCF calculations for BLi₃ (D_{3h}) show very little configurational mixing - all the natural orbital occupation numbers (NOONs) for the bonding and antibonding orbitals are close to 2 and 0, respectively (see Figure 2). We next included the effect of dynamic electron correlation and, because gradients at MCODPT2/6-31G(d) are not available, the BLi₃ potential energy surface was mapped around the CASSCF(6,6) structures to evaluated the $D_{3h} \rightarrow C_{2v}$ relationship. The grid, using 40 points obtained by varying the B-Li distance between 2.0 and 2.4 Å and the Li-B-Li angle between 110° and 130° (see Figure 3), shows that bending the Li-B-Li angle from 120° (D_{3h}) to 130° (with a BLi distance of 2.2 Å) results in an energy gain of 0.15 kcal/mol. Thus, it appears that the shallow minimum obtained at CASSCF(6,6)/6-31G(d) disappears upon including the effects of dynamic electron correlation! Only the C_{2v} form of BLi₃ is a minimum energy structure.

The average B–Li bond lengths (Table 3, except CASSCF) are 2.174 Å ($\sigma = 0.023$) and 2.282 Å ($\sigma = 0.047$). These distances are slightly longer than that of diatomic BLi and slightly shorter than that of BLi₂. The magnitude of the electron densities at the bond critical points (Table 8) are in line with these bond length variations. The low values of the electron densities at all levels of theory underscore the high degree of structural flexibility for BLi₃ (C_{2v}), which is also in line with the small average value of 109 cm⁻¹ ($\sigma = 40$) for its smallest harmonic frequency. From these analyses it appears that both MP2 and B3LYP/6-31G(*d*) provide reasonable geometries for the three global minima of BLi₁₋₃.

C. Energies. In this section we discuss the relative energies, the atomization energies, and the dissociation energies for BLi, BLi₂, and BLi₃. Emphasis is placed on the various theoretical methods and basis sets employed. Relative energies are listed in Table 5, and the atomization energies for BLi and those for the dissociation reactions 1-8 are given in Table 7. Table 7 also lists Li₂ and Li₃ atomization energies and the Li-dissociation energy for Li₃ (listed as reaction 9). For simplicity, we abbreviate QCISD(T)/6-311+G(3df) as QCI and MCQDPT2/ 6-311+G(2df) as MCQDPT2.

BLi. The energetic preference ΔE of the ${}^{3}\Pi_{g}$ ground state over the Σ^+ state varies strongly with the theoretical method employed, but little with the size of the basis set (see Tables 1 and 5). At our highest levels, ΔE ranges between 6.4 kcal/mol (QCI), also reported by Boldyrev,¹³ and 2.3 kcal/mol (G2-(MP2)). This is a surprising result because the G2 method is calibrated largely on diatomics to approximate the QCISD(T)/ 6-311+G(3df)//MP2/6-31G(d) level.³¹ Excluding the G2 empirical correction, $\Delta E(\text{HLC})$ gives an energy difference of 5.2 kcal/mol for the two spin states. Because no significant configurational mixing occurs, electron correlation corrections with single reference-based methods, such as MPn and QCISD-(T), are expected to be adequate. Evidently, MCQDPT2 predicts ΔE of 6.1 kcal/mol, a mere 0.3 kcal/mol smaller than QCI. The modest MP2 and particularly UHF give much larger energy differences, whereas B3LYP/6-31G(d) seems to perform rather well with a ΔE of 8.0 kcal/mol. The basis set effect on going from the modest 6-31G(d) to the much larger 6-311+G(2df) is evident for the CASSCF(4,8) and MCQDPT2 methods with respective increases in ΔE of 4.3 and 1.5 kcal/mol.

BLi $({}^{3}\Pi_{g})$ has a bond dissociation energy D_{o} of 26.6 kcal/mol at QCI. A nearly identical value of 26.5 kcal/mol is

TABLE 2: Structural Parameters and Total and Relative Energies for BLi₂ Isomers^a

			BLi ₂ ($^{2}B_{2})$		$BLi_2(^2B_1)$					
level	energy	$\langle s^2 \rangle$	B-Li	Li–Li	freq. (a_1, b_2, a_1)	energy	$\langle s^2 \rangle$	B-Li	Li-Li	freq. (b_2, a_1, a_1)	ΔE
B3LYP/A	39.72749	1.242	2.317	2.779	269, 288, 430	39.70783	1.305	2.345	2.546	165, 327, 418	12.3
UHF/A	39.44474	1.647	2.349	2.706	303, 329, 451	39.42488	1.664	2.369	2.509	224, 360, 432	12.5
UHF/B	39.45541	1.654	2.326	2.677	297, 332, 449	39.43748	1.672	2.356	2.475	230, 363, 422	11.3
UHF/C	39.45588	1.653	2.327	2.679	296, 332, 448	39.43808	1.671	2.362	2.477	226, 361, 418	11.2
MP2(full)/A	39.50306	1.646	2.333	2.734	292, 334, 452	39.48317	1.664	2.349	2.524	305, 346, 429	12.5
MP2(full)/B	39.55540	1.653	2.309	2.705	289, 338, 450	39.53753	1.671	2.333	2.496	336, 353, 426	11.2
MP2(full)/C	39.55632	1.652	2.309	2.705	289, 338, 450	39.53877	1.670	2.340	2.500	332, 350, 421	11.0
CASSCF(5,5)/A	39.46255	0.750	2.365	2.760	301, 312, 434	39.44271	0.750	2.383	2.574	206, 340, 419	12.5

^{*a*} Total energies in -au, relative energies (ΔE) for the two isomers in kcal/mol, bond lengths in Å, and frequencies in cm⁻¹. ^{*b*} A: 6-31G(*d*), B: 6-311G(*d*), and C: 6-311+G(*d*).

TABLE 3: Structural Parameters and Total and Relative Energies for BLi₃ Isomers^a

				$BLi_3(C_{2v})$		$BLi_3(D_{3h})$			
level	energy	B-Li	B-Li	LiBLi'	freq.	energy	B-Li	freq.	ΔE
B3LYP/A	47.27985	2.161	2.270	91.4	109, 184, 211, 417, 462, 616	47.27868	2.155	16i, 198, 403, 582	0.7
B3LYP/B	47.28873	2.146	2.243	91.2	118, 179, 212, 422, 469, 617	47.28725	2.133	23i, 191, 408, 593	0.9
B3LYP/C	47.28902	2.148	2.243	90.2	121, 180, 213, 422, 468, 616	47.28747	2.134	27i, 193, 409, 593	1.0
B3LYP/D	47.28997	2.144	2.236	91.8	117, 180, 212, 422, 471, 615	47.28859	2.130	20i, 191, 410, 594	0.9
HF/A	46.86811	2.183	2.312	97.0	36, 201, 187, 383, 480, 634	46.86836	2.182	69, 211, 411, 587	-0.2
HF/B	46.87871	2.169	2.285	96.8	50, 194, 187, 386, 484, 631	46.87878	2.172	65, 203, 412, 595	0.0
HF/C	46.87908	2.170	2.284	96.8	48, 195, 187, 387, 484, 631	46.87920	2.164	68, 210, 413, 595	-0.1
MP2(full)/A	46.99266	2.178	2.262	94.4	128, 194, 217, 425, 498, 579	46.99094	2.172	30i, 188, 388, 573	1.1
MP2(full)/B	47.05852	2.169	2.236	93.9	124, 180, 213, 427, 514, 594	47.05691	2.160	36i, 176, 403, 585	1.0
MP2(full)/C	47.05969	2.169	2.235	93.9	124, 181, 213, 427, 513, 595	47.05799	2.160	49i, 144, 403, 584	1.1
QCISD/A	47.00746	2.218	2.378	84.1	123, 188, 216, 425, 498, 585	47.00172	2.172	69i, 181, 399, 570	3.6
QCISD/B	47.02444	2.202	2.339	84.2	159, 161, 242, 382, 424, 594	47.01894	2.151	72i, 175, 407, 581	3.5
QCISD/C	47.02539	2.202	2.339	84.2	160, 161, 243, 382, 424, 595	47.01902	2.151	76i, 152, 409, 582	4.0
CASSCF(6,6)/A	46.93623	2.251	2.370	84.9	121, 167, 234, 386, 401, 560	46.93503	2.199	50, 187, 386, 557	0.8

^{*a*} Total energies in –au, relative energies (ΔE) between the two isomers in kcal/mol, bond lengths in Å, angles in degrees, and frequencies in cm⁻¹. ^{*b*} A: 6-31G(*d*), B: 6-311G(*d*), C: 6-311+G(*d*), and D: 6-311+G(2*df*).

ГABLE 4:	Structura	l Parameters	and	Total	and	Relative	Energies	for	Li_2	and	Li ₃	Isomers	a
----------	-----------	--------------	-----	-------	-----	----------	----------	-----	--------	-----	-----------------	---------	---

			Li ₂ (1	$\Sigma_{\rm g}$)	$Li_{3}(^{2}B_{2})$			$Li_{3}(^{2}A_{1})$					
level	В	Li	energy	Li-Li	energy	$\langle s^2 \rangle$	Li–Li′	Li-Li	energy	$\langle s^2 \rangle$	Li–Li′	Li–Li	ΔE
B3LYP/A	24.65435	7.49098	15.01426	2.723	22.52356	0.784	2.785	3.377	22.52290	0.776	3.094	2.666	0.4
(U)HF/A	24.52203	7.43137	14.86693	2.807	22.31331	1.216	2.868	3.310	22.30987	0.981	3.305	2.719	2.2
(U)HF/B	24.53010	7.43202	14.87035	2.784	22.31841	1.225	2.837	3.253	22.31455	0.983	3.253	2.683	2.4
(U)HF/C	24.53034	7.43203	14.87035	2.784	22.31845	1.226	2.837	3.253	22.31459	0.984	3.253	2.683	2.4
MP2(full)/A	24.56246	7.43186	14.88685	2.773	22.33044	1.183	2.820	3.447	22.33084	0.963	3.152	2.730	-0.3
MP2(full)/B	24.58580	7.44490	14.91512	2.737	22.37277	1.196	2.775	3.368	22.37312	0.967	3.098	2.687	-0.2
MP2(full)/C	24.58631	7.44494	14.91526	2.737	22.37295	1.198	2.780	3.363	22.37331	0.967	3.098	2.687	-0.2
CASSCF/A			14.87792	2.733	22.32036	0.750	2.843	3.313	22.31729	0.750	3.295	2.699	1.9

^{*a*} Total energies in -au, relative energies (ΔE) between the Li₃ isomers in kcal/mol, and bond lengths in Å. ^{*b*} A: 6-31G(*d*), B: 6-311G(*d*), C: 6-311+G(*d*).

TABLE 5: Total and Relative Energies for BLi, BLi₂, and BLi₃ Isomers^a

$level^b$	BLi (³ Π _g)	BLi ($^{1}\Sigma^{+}$)	ΔE	BLi ₂ (${}^{2}B_{2}$)	BLi ₂ (${}^{2}B_{1}$)	ΔE	$\mathrm{BLi}_3\left(B_{2\mathrm{v}}\right)$	BLi ₃ (<i>B</i> _{3h})	ΔE
CASSCF/6-311+G(2df)//I	32.03663	32.04216	-3.5	39.47439	39.45716	10.8	46.94861	46.94719	0.9
MCQDPT2/6-31G(<i>d</i>)//I	32.04336	32.03601	4.6	39.51922	39.49959	12.3	47.00000	46.99281	4.5
MCQDPT2/6-311+G(2df)//I	32.06879	32.05905	6.1	39.54723	39.53038	10.6	47.03142	47.02602	3.4
QCISD(T)/6-311+G(2df)//II	32.07210	32.06190	6.4	39.55125	39.53416	10.7	47.04795	47.04470	2.0
QCISD(T)/6-311+G(3df)//II	32.07283	32.06268	6.4	39.55206	39.53484	10.8	47.04871	47.04522	2.2
G2	32.07718	32.07270	2.8	39.55958	39.54268	10.6	47.06076	47.05720	2.2
G2(MP2)	32.07709	32.07346	2.3	39.55970	39.54265	10.7	47.06109	47.05712	2.5

^{*a*} Total energies in -au and relative energies (ΔE) between each set of isomers in kcal/mol. ^{*b*} I = CASSCF(4,8) for BLi, CASSCF(5,5) for BLi₂, and CASSCF(6,6) for BLi₃, all using the 6-31G(*d*) basis set. II = MP2(full)/6-311+G(*d*).

obtained at G2(MP2). All other methods, including B3LYP/ 6-31G(d), give similar binding energies (Table 7). Expectantly, these energies are in very good agreement with earlier theoretical estimates.^{8,10,13}

mol (Table 5). Larger energy differences of up to 1.7 kcal/mol are found with the smaller 6-31G(d) basis set. B3LYP/6-31G* performs reasonably well, with an energy difference of 12.3 kcal/mol.

*BLi*₂. The ²*B*₂ state with C_{2v} symmetry is the ground state of BLi₂. Its energy difference with the ²B₁ state is ~11 kcal/ mol. The highest levels of theory (QCI, G2, and MCQDPT2) estimate this $\Delta E(^{2}B_{2} - ^{2}B_{1})$ to be between 10.6 and 10.8 kcal/

The computed atomization energy of BLi₂ (${}^{2}B_{2}$) is estimated at 55.6 kcal/mol at QCI. Both G2 and MCQDPT2 give larger values of 58.4 and 59.0 kcal/mol, respectively. After excluding the empirical correction from the G2 energy, the resulting

TABLE 6: Total and Relative Energies for B, Li, Li₂, and Li₃ Isomers^a

$level^b$	В	Li	$Li_2 (^1\Sigma_g)$	$Li_3(^2B_2)$	$Li_3(^2A_1)$	ΔE
CASSCF/6-311+G(2 <i>df</i>)//I	24.54626	7.43208	14.87964	22.32743	22.32371	2.3
MCQDPT2/6-31G(d)//I	24.56883	7.43137	14.88779	22.33792	22.33536	1.6
MCQDPT2/6-311+G(2df)//I	24.58667	7.43208	14.89319	22.34735	22.34458	1.7
QCISD(T)/6-311+G(2df)//II	24.59673	7.43203	14.90171	22.35490	22.35454	0.2
QCISD(T)/6-311+G(3df)//II	24.59706	7.43203	14.90154	22.35473	22.35437	0.2
G2	24.60204	7.43222	14.90576	22.35776	22.35737	0.2
G2(MP2)	24.60270	7.43222	14.90640	22.35790	22.35766	0.2

^{*a*} Total energies in -au and relative energies (ΔE) between the two Li₃ isomers in kcal/mol. ^{*b*} I = CASSCF(2,8) for Li₂ and CASSCF(5,5) for Li₃, both using the 6-31G(*d*) basis set. II = MP2(full)/6-311+G(*d*).

TABLE 7: Atomization Energies (AE) and Reaction Enthalpies for BLi, BLi₂, and BLi₃ Isomers and for Li₂ and Li₃^a

	BLi (${}^{3}\Pi_{g}$)]	BLi ₂ (${}^{2}B_{2}$)			$BLi_3(C_{2v})$					Li ₃ ($(^{2}B_{2})$
level ^b	AE^c	AE	(2)	(3)	AE	(5)	(6)	(7)	(8)	AE	AE	(9)
B3LYP/A	27.5	55.8	28.3	36.4	92.8	37.0	46.0	62.0	73.5	19.4	30.8	11.5
MP2(full)/A	22.1	46.7	24.7	32.7	81.6	34.8	45.5	60.7	67.6	14.0	20.9	6.9
MP2(full)/B	24.4	48.6	24.2	33.2	83.7	35.1	43.9	60.8	68.3	15.4	22.9	7.5
MP2(full)/C	24.9	48.8	23.9	33.4	84.0	35.3	43.7	61.1	68.6	15.4	22.9	7.5
MCQDPT2/6-31G(<i>d</i>)//I	20.6	53.5	33.6	38.3	83.3	29.8	48.2	56.9	68.1	15.2	26.4	11.2
MCQDPT2/6-311+G(2 df)//I	24.8	59.0	34.0	41.3	90.5	31.5	47.8	59.5	72.8	17.7	31.0	13.3
QCISD(T)/6-311+G(2df)//II	26.4	55.3	28.9	32.1	94.5	39.2	44.9	58.5	71.3	23.2	36.0	12.8
QCISD(T)/6-311+G(3 <i>df</i>)//II	26.6	55.6	28.9	32.5	94.8	39.1	45.0	58.9	71.7	23.1	35.9	12.8
G2	26.9	58.4	31.5	32.5	101.7	43.3	48.8	63.4	75.8	25.9	38.3	12.4
G2(MP2)	26.5	58.1	31.6	31.8	101.5	43.4	48.7	63.1	75.2	26.3	38.4	12.1

^{*a*} Energies in kcal/mol. For reactions 1–8 and 9, see text. ^{*b*} A: 6-31G(*d*), B: 6-311G(*d*), and C: 6-311+G(*d*). I = CASSCF(4,8) for BLi, CASSCF(5,5) for BLi₂, CASSCF(6,6) for BLi₃, CASSCF(2,8) for Li₂, and CASSCF(5,5) for Li₃, all using the 6-31G(*d*) basis set. II = MP2(full)/ 6-311+G(*d*). ^{*c*} Atomization energies.

TABLE 8: Bond Critical Point Data for BLi, BLi₂, and BLi₃^a

	BLi	і (³ П _g)	BLi ₂ (² B ₂)			$BLi_3(C_{2v})$			
level ^b	$\rho(BLi)$	$\nabla^2 \rho(\text{BLi})$	$\overline{\rho(\text{BLi})}$	$\nabla^2 \rho(BLi)$	$\rho(BLi)$	$\nabla^2 \rho(\text{BLi})$	$\rho(BLi')$	$\nabla^2 \rho(\text{BLi'})$	
B3LYP/A	2.81	11.33	2.14	7.46	2.93	11.51	2.25	8.31	
(U)HF/A	3.00	11.77	2.07	7.54	2.96	11.28	2.15	7.17	
(U)HF/B	3.20	12.02	2.23	7.90	3.11	12.02	2.27	8.06	
(U)HF/C	3.18	11.99	2.23	7.91	3.10	12.06	2.27	8.10	
MP2(full)/A	2.90	11.60	2.07	7.48	2.69	10.79	2.29	8.91	
MP2(full)/B	3.12	11.69	2.24	7.87	2.83	11.21	2.45	9.68	
MP2(full)/C	3.10	11.61	2.24	7.89	2.84	11.22	2.46	9.71	
QCISD/A	2.76	11.07			2.63	10.31	1.78	6.31	
CASSCF/A	2.68	10.42	1.96	7.09	2.49	9.47	1.82	6.89	

^a Electron densities and their Laplacians are in 10^{-2} au. ^b A: 6-31G(d), B: 6-311G(d), C: 6-311+G(d), and D: 6-311+G(2df).

atomization energy of 55.5 kcal/mol is essentially identical to the QCI energy. The NOONs of the active $({}^{2}B_{2})$ orbitals of the CASSCF(5,5)/6-31G(*d*) optimized wave function are 1.954 (*a*₁), 1.582 (*a*₁), 1.00 (*b*₂), 0.411 (*a*₁), and 0.054 (*b*₁). Similar values are obtained for the ${}^{2}B_{1}$ state. These NOONs are indicative of some configurational mixing and may contribute to the difference in atomization energies obtained between the QCI and MCQDPT2 methods. Again, we find the performance of B3LYP/6-31G(*d*) to be very satisfactory, with an atomization energy of 55.8 kcal/mol. Interestingly, this and the high level values for BLi₂ (${}^{2}B_{2}$) are about twice the atomization energy of BLi (${}^{3}\Pi_{g}$).

Elimination of one Li atom from BLi₂ (${}^{2}B_{2}$), as in reaction 2, is endothermic by 28.9 kcal/mol at QCI and 5.1 kcal/mol more at MCQDPT2. The G2 dissociation energy of 31.5 kcal/ mol is essentially the same as the QCI value after excluding the empirical correction. These B–Li bond dissociation energies are larger than that estimated for BLi (${}^{3}\Pi_{g}$). Loss of the Li₂ dimer (reaction 3) requires 32.5 kcal/mol as predicted by both QCI and G2, whereas MCQDPT2 estimates this process to be 8.8 kcal/mol more endothermic. At QCI this Li₂ dissociation reaction is nearly isoenergetic, with loss of a single Li atom from BLi₂.

*BLi*₃. The ground-state structure of BLi₃, with C_{2v} symmetry, has an energy difference with the second-order transition structure (D_{3h}) of only 2.2 kcal/mol at both QCI and G2 and of 3.4 kcal/mol at MCQDPT2 (Tables 3 and 5). These values, except for the one at G2, are reduced upon inclusion of zero-point-energy corrections. Thus, the upper limit for scrambling of the Li atoms in BLi₃ is in the 2–3 kcal/mol range.

The atomization energy of BLi_3 is predicted to be 94.8 kcal/ mol at QCI (Table 7). The much larger value of 101.7 kcal/ mol obtained with G2 is due to the empirical correction. MCQDPT2 gives a 4.3 kcal/mol lower atomization energy, and the B3LYP/6-31G(d) value of 92.8 kcal/mol is within 2 kcal/ mol of the QCI estimate.

Elimination of a single Li atom (reaction 5) is the least endothermic dissociation channel for BLi₃. It requires 39.1 kcal/mol at QCI and 4.2 kcal/mol more at G2 due to the empirical correction, whereas the MCQDPT2 estimate is only 31.5 kcal/mol. At the QCI level, Li elimination from BLi₃ requires 6.6 kcal/mol more than from BLi₂. In contrast, B3LYP/ 6-31G(*d*) predicts both reactions 2 and 5 to have similar endothermicities of 37 kcal/mol. Surprisingly, MCQDPT2 gives a 10 kcal/mol larger Li dissociation energy for BLi₂ than for BLi₃.

Figure 1. Structures for BLi₃ and Li₃.

Figure 2. Active orbitals with occupation numbers for the optimized CASSCF(6,6)/6-31G(*d*) wave function in the σ_v (*xz*) plane of BLi₃ (C_{2v}).

Atomic boron elimination from BLi₃, producing Li₃ in its ${}^{2}B_{2}$ state (reaction 8), requires 71.7 (73.5) kcal/mol at QCI (B3LYP/6-31G(*d*)). This process is significantly more endothermic than the corresponding 32.5 (36.4) kcal/mol needed for elimination of a boron atom from BLi₂ (reaction 3). Dissociation of Li₂ from BLi₃ to give BLi (${}^{3}\Pi_{g}$), as in reaction 6, requires

Figure 3. MCQDPT2/6-31G(d) potential energy surface for BLi₃.

45.0 (46.0) kcal/mol at QCI (B3LYP/6-31G(*d*)). Both reaction 3 and 6 do not appear to be very sensitive to the employed levels of theory. Again, B3LYP performs well.

The atomization energies of both Li₂ and Li₃ are provided in Table 7 for comparison. With the higher level theoretical models, the atomization energy is constant per Li atom, and amounts to ~13 kcal/mol, in accord with literature estimates.³⁶ Interestingly, we find that the B–Li and Li–Li binding energies are similar at G2 (26 kcal/mol) with QCI giving a slightly stronger B–Li bond by ~3 kcal/mol. The Li-dissociation energy for Li₃ of ~13 kcal/mol (reaction 9) is much smaller than those of 29 and 39 kcal/mol (all QCI) for BLi₂ and BLi₃, respectively, illustrating the strong influence of the boron atom.

Conclusions

We have examined the structures, harmonic vibrational frequencies, bonding patterns, and reaction enthalpies for all possible dissociation channels of BLi $({}^{3}\Pi_{g})$, BLi₂ $({}^{2}B_{2})$, and BLi₃ (C_{2v}) at several levels of theory with both single reference- and multireference-based correlated methods using a variety of basis sets. Neither of the structures is much influenced by the size of the basis set nor by the method of electron correlation employed. However, dynamic electron correlation is important for characterization of stationary points on the potential energy surface. The D_{3h} symmetry form of BLi₃ is a second-order saddle point with an energy difference of 2.2 kcal/mol with the C_{2v} minimum form. Energy evaluations were done at the QCISD(T)/6-311+G(3df) //MP2(full)/6-311+G(d), MCQDPT2/ 6-311+G(2df)//CASSCF/6-31G(d), G2 and G2(MP2) levels of theory. The QCI method gives atomization energies of 27, 56, and 95 kcal/mol for BLi $({}^{3}\Pi_{g})$, BLi₂ $({}^{2}B_{2})$, and BLi₃ (C_{2v}) , respectively. After excluding the empirical corrections, the G2 and G2(MP2) energetics are essentially the same as the QCI values. The QCI method estimates the Li-dissociation energies for BLi2 and BLi3 at 29 and 39 kcal/mol, respectively. The same method gives an energy difference of 6.4 kcal/mol for the ${}^{3}\Pi_{g}$ and ${}^{1}\Sigma^{+}$ states of BLi and estimates that the ${}^{2}B_{2}$ state of BLi₂ is 10.8 kcal/mol more stable than the ${}^{2}B_{1}$ state. Density functional theory with the hybrid B3LYP functionals using the 6-31G(d) basis set performs extremely well. It provides structures, frequencies, and energetics similar in accuracy to the most sophisticated ab initio methods. This result suggests that the B3LYP functionals with the modest 6-31G(d) basis set may be an attractive alternative for studying larger boronlithium clusters.

Acknowledgment. This work was supported in part by the Air Force Office Science Research under grant F49620-96-1-0450. We thank Drs. T. A. Hamilton and N. J. Harris for helpful discussions.

References and Notes

- (1) Davis, S. C.; Klabunde, K. J. Chem. Rev. 1982, 82, 153.
- (2) Koutecký, J.; Fantucci, P. Chem. Rev. 1986, 86, 539.
- (3) Bonacic-Koutecky, V.; Fantucci, P.; Koutecký, J. Chem. Rev. 1991, 91, 1035.
- (4) Meden, A.; Mavri, J.; Bele, M.; Pejovnik, S. J. Phys. Chem. 1995, 99, 4252.
 - (5) Kaufman, J. J.; Sachs, L. M. J. Chem. Phys. 1970, 52, 645.
 - (6) Cade, P. E.; Huo, W. M. At. Data Nucl. Data Tables 1975, 15, 1.
 - (7) Zhu, Z. H.; Murrell, J. N. Chem. Phys. Lett. 1982, 88, 262.
- (8) Knowles, D. B.; Murrell, J. N. J. Mol. Struct. (Theochem.) 1986, 135, 169.

(9) Saxon, R. P. Theoretical Studies of Boron Compounds; *Proceedings* of the High Energy Density Matter, 1992; Woods Hole, MA.

(10) Sheehy, J. A. Spectroscopy of Lithium Boride, A candidate HEDM Species; *Proceedings of the High Energy Density Matter*, 1995; Woods Hole, MA.

(11) Ivanic, J.; Marsden, C. J. J. Am. Chem. Soc. 1993, 115, 7503. Marsden, C. J. J. Chem. Soc., Chem. Commun. 1989, 1356. Ivanic, J.;

- Marsden, C. J.; Hassett, D. M. J. Chem. Soc., Chem. Commun. 1993, 822.
 (12) Nemukhin, A. V.; Almlöf, J. Chem. Phys. Lett. 1980, 76, 601.
- (13) Boldyrev, A. I.; Simons, J.; Schleyer, P. v. R. J. Chem. Phys. 1993, 1993, 8793.
 (14) Boder, P. F. W.; Neuvon Dong, T. T. Adv. Ovent. Chem. 1981.
- (14) Bader, R. F. W.; Nguyen-Dang, T. T. Adv. Quant. Chem. 1981, 14, 63.
- (15) Bader, R. F. W.; Nguyen-Dang, T. T.; Tal, Y. Rep. Prog. Phys. 1981, 44, 893.
 - (16) Bader, R. F. W. Chem. Rev. 1991, 91, 893.
 - (17) Kohn, W.; Sham, L. J. Phys. Rev. A 1965, 140, 1133.
 - (18) Rothaan, C. C. J. Rev. Mod. Phys. 1951, 23, 69.
 - (19) Pople, J. A.; Nesbet, R. K. J. Chem. Phys. 1959, 22, 571.
- (20) Pople, J. A.; Binkley, J. S.; Seeger, R. Int. J. Quantum Chem. Symp. 1976, 10, 1.

(21) Pople, J. A.; Krishnan, R.; Schlegel, B.; Binkley, J. S. Int. J. Quantum Chem. Symp. 1979, 13, 325.

- (22) Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257.
- (23) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72, 650.
- (24) Clark, T. C., J.; Spitznagel, G. W., Schleyer, P. v. R. J. Comput. Chem. 1983, 4, 294.
 - (25) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
 - (26) Becke, A. D. Phys. Rev. A 1988, 38, 3098.
 - (27) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
- (28) Roos, B. O.; Taylor, P. R.; Siegbahn, P. E. M. Chem. Phys. 1980, 48, 157.
- (29) Curtiss, L. A.; Raghavachari, K.; Trucks, G. W.; Pople, J. A. J. Chem. Phys. 1991, 94, 7221.
- (30) Curtiss, L. A.; Raghavachari, K.; Pople, J. A. J. Chem. Phys. 1993, 98, 1293.

(31) Raghavachari, K.; Trucks, G. W.; Pople, J. A.; Replogle, E. S. Chem. Phys. Lett. 1989, 158, 207.

(32) Nakano, H. J. Chem. Phys. 1993, 99, 7983.

(33) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. B. F.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. GAUSSIAN94, Revision B.1; Gaussian, Inc.: Pittsburgh, PA, 1994.

(34) Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S.; Windus, T. L.; Dupuis, M.; Montgomery, J. A. *J. Comput. Chem.* **1993**, *14*, 1347.

(35) As noted by a referee, this behavior may, in fact, be fortuitous because both states $({}^{2}B_{2}$ and ${}^{2}B_{1})$ have similar s^{2} expectation values.

(36) Boustani, I.; Pewestorf, W.; Fantucci, P.; Bonacic-Koutecký, V.; Koutecký, J. *Phys. Rev. B* **1987**, *35*, 9437.